Solids and supersolids of three-body interacting polar molecules on an optical lattice.
نویسندگان
چکیده
We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by Büchler et al. [Nature Phys. 3, 726 (2007)]. To this end, quantum Monte Carlo simulations, exact diagonalization, and a semiclassical approach are used to explore hard-core bosons on the 2D square lattice which interact solely by long-ranged three-body terms. The resulting phase diagram shows a sequence of solid and supersolid phases. Our findings are directly relevant for future experimental implementations and open a new route towards the discovery of a lattice supersolid phase in experiment.
منابع مشابه
QUANTUM SIMULATION Creation of a low-entropy quantum gas of polar molecules in an optical lattice
Ultracold polar molecules, with their long-range electric dipolar interactions, offer a unique platform for studying correlated quantum many-body phenomena. However, realizing a highly degenerate quantum gas of molecules with a low entropy per particle is challenging. We report the synthesis of a low-entropy quantum gas of potassiumrubidium molecules (KRb) in a three-dimensional optical lattice...
متن کاملAn ultracold gas of CsYb molecules in an optical lattice: A toolbox for quantum simulation
The goal of this project is to form a gas of ground-state polar molecules in an optical lattice, with each molecule interacting with its neighbours via controlled electric dipole and spin-spin interactions. This would constitute a rich and versatile system capable of simulating lattice-spin models that are ubiquitous in condensed matter physics [1]. The same system could also be used for proces...
متن کاملDD - MM - YYYY ) 2 . REPORT TYPE 3 . DATES COVERED ( From - To ) New Reprint - 4
Observation of dipolar spin-exchange interactions with lattice-confined polar molecules Report Title With the production of polar molecules in the quantum regime1, 2, long-range dipolar interactions are expected to facilitate understanding of strongly interacting many-body quantum systems and to realize lattice spin models3 for exploring quantum magnetism. In ordinary atomic systems, where cont...
متن کاملCreation of a low-entropy quantum gas of polar molecules in an optical lattice.
Ultracold polar molecules, with their long-range electric dipolar interactions, offer a unique platform for studying correlated quantum many-body phenomena. However, realizing a highly degenerate quantum gas of molecules with a low entropy per particle is challenging. We report the synthesis of a low-entropy quantum gas of potassium-rubidium molecules (KRb) in a three-dimensional optical lattic...
متن کاملDoublon dynamics and polar molecule production in an optical lattice.
Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 101 15 شماره
صفحات -
تاریخ انتشار 2008